日韩精品 中文字幕 动漫,91亚洲午夜一区,在线不卡日本v一区v二区丶,久久九九国产精品自在现拍

注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計算機/網(wǎng)絡(luò)數(shù)據(jù)庫數(shù)據(jù)庫設(shè)計/管理商業(yè)數(shù)據(jù)科學(xué)(影印版)

商業(yè)數(shù)據(jù)科學(xué)(影印版)

商業(yè)數(shù)據(jù)科學(xué)(影印版)

定 價:¥98.00

作 者: Foster Provost
出版社: 東南大學(xué)出版社
叢編項:
標 簽: 暫缺

ISBN: 9787564175283 出版時間: 2018-02-01 包裝:
開本: 頁數(shù): 字數(shù):  

內(nèi)容簡介

  這是一本博大精深但又不太技術(shù)的指南,向你介紹數(shù)據(jù)科學(xué)的基本原則,并帶領(lǐng)你全程瀏覽從所搜集數(shù)據(jù)中抽取有用知識和商業(yè)價值所必需的“數(shù)據(jù)分析思維”。通過學(xué)習(xí)數(shù)據(jù)科學(xué)原則,你將領(lǐng)略當(dāng)今用到的諸多數(shù)據(jù)挖掘技巧。更重要的是,這些原則支撐著通過數(shù)據(jù)挖掘技巧解決商業(yè)問題所需的手段和策略。

作者簡介

暫缺《商業(yè)數(shù)據(jù)科學(xué)(影印版)》作者簡介

圖書目錄

Preface
1.Introduction: Data-Analytic Thinking
The Ubiquity of Data Opportunities
Example: Hurricane Frances
Example: Predicting Customer Churn
Data Science, Engineering, and Data-Driven Decision Making
Data Processing and "Big Data"
From Big Data 1.0 to Big Data 2.0
Data and Data Science Capability as a Strategic Asset
Data-Analytic Thinking
This Book
Data Mining and Data Science, Revisited
Chemistry Is Not About Test Tubes: Data Science Versus the Work of the Data Scientist
Summary
2.Business Problems and Data Science Solutions
From Business Problems to Data Mining Tasks
Supervised Versus Unsupervised Methods
Data Mining and Its Results
The Data Mining Process
Business Understanding
Data Understanding
Data Preparation
Modeling
Evaluation
Deployment
Implications for Managing the Data Science Team
Other Analytics Techniques and Technologies
Statistics
Database Querying
Data Warehousing
Regression Analysis
Machine Learning and Data Mining
Answering Business Questions with These Techniques
Summary
3.Introduction to Predictive Modeling: From Correlation to Supervised Segmentation.
Models, Induction, and Prediction
Supervised Segmentation
Selecting Informative Attributes
Example: Attribute Selection with Information Gain
Supervised Segmentation with Tree-Structured Models
Visualizing Segmentations
Trees as Sets of Rules
Probability Estimation
Example: Addressing the Churn Problem with Tree Induction
Summary
4.Fitting a Model to Data
Classification via Mathematical Functions
Linear Discriminant Functions
Optimizing an Objective Function
An Example of Mining a Linear Discriminant from Data
Linear Discriminant Functions for Scoring and Ranking Instances
Support Vector Machines, Briefly
Regression via Mathematical Functions
Class Probability Estimation and Logistic "Regression"
Logistic Regression: Some Technical Details
Example: Logistic Regression versus Tree Induction
Nonlinear Functions, Support Vector Machines, and Neural Networks
5.Overfitting and Its Avoidance
6.Similarity, Neighbors, and Clusters
7.Decision AnalyticThinking h What Is a Good Model?
8.Visualizing Model Performance
9.Evidence and Probabilities
10.Representing and Mining Text
11.Decision Analytic Thinking Ih Toward Analytical Engineering
12.Other Data Science Tasks and Techniques
13.Data Science and Business Strategy
14.Conclusion
A.Proposal ReviewGuide
B.Another Sample Proposal
Glossary
Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) rgspecialties.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號