1Fundamental Mathematics of Nonlinear Emission Photonic Glass Fiber and Waveguide Devices1 1.1Introduction1 1.2Newton Iteration Algorithm for Nonlinear Rate Equation Solution1 1.2.1SingleVariable1 1.2.2MultiVariable3 1.3RungeKutta Algorithm for PowerPropagation Equation Solution4 1.3.1SingleFunction4 1.3.2MultiFunctions6 1.4TwoPoint Boundary Problem for PowerPropagation Equations in a Laser Cavity7 1.4.1Principle7 1.4.2Shooting Method and Relaxation Method7 References92Fundamental Spectral Theory of Photonic Glasses10 2.1Introduction10 2.2JuddOfelt Theory10 2.3Transition Probability and Quantum Efficiency12 2.4Fluorescence Branch Ratio13 2.5Homogeneous and Inhomogeneous Broadening of Spectra14 References153Spectral Properties of YtterbiumDoped Glasses16 3.1Introduction16 3.2Formation Region of Yb2O3Containing Glasses16 3.3Laser Performance Parameters of YtterbiumDoped Glasses17 3.3.1Minimum Fraction of Excited State Ions17 3.3.2Saturation Pump Intensity18 3.3.3Minimum Pump Intensity18 3.3.4StorageEnergy and Gain Parameters18 3.4Spectral Properties of Yb3+Doped Borate Glasses19 3.4.1Compositional Dependence of Spectral Properties19 3.4.2Dependence of Spectral Properties on Active Ion Concentration22 3.5Spectral Properties of Yb3+Doped Phosphate Glasses23 3.5.1Compositional Dependence of Spectral Properties23 3.5.2Dependence of Spectral Properties on Active Ion Concentration26 3.6Spectral Properties of Yb3+Doped Silicate Glasses28 3.6.1Compositional Dependence of Spectral Properties28 3.6.2Dependence of Spectral Properties on Active Ion Concentration32 3.7Spectral Properties of Yb3+Doped Germanate Glasses34 3.8Spectral Properties of Yb3+Doped Telluride Glasses36 3.8.1Compositional Dependence of Spectral Properties36 3.8.2Dependence of Spectral Properties on Active Ion Concentration39 3.9Dependence of Spectral Property and Laser Performance Parameters on Glass System43 3.9.1Dependence of Spectral Property on Glass Systems43 3.9.2Dependence of Laser Performance Parameters on Glass Systems46 3.10Dependence of EnergyLevel Structure of Yb3+ on Glass Systems51 3.11Cooperative Upconversion of Yb3+ Ion Pairs53 3.11.1Cooperative Upconversion Luminescence53 3.11.2ConcentrationQuenching Mechanics57 3.11.3Concentration Dependence of Luminescence Intensity59 3.12Fluorescence Trap Effect of Yb3+ Ions in Glasses60 References634Compact Fiber Amplifiers65 4.1Introduction65 4.2Level Structure and Numerical Model66 4.3Dependence of Gain and Noise Figure on Concentrations67 4.4Doping Concentrations with ShortLength High Gain71 References725Photonic Glass Fiber Lasers74 5.1Introduction74 5.2Fundamental Physics of Fiber Laser74 5.2.1Lasing Conditions of Laser74 5.2.2Threshold Gain75 5.2.3Phase Condition and Laser Modes76 5.2.4Population Inversion Calculation76 5.3Numerical Models of RareEarthDoped Fiber Lasers80 5.3.1Configuration and PowerPropagation Equations of Fiber Laser80 5.3.2Output Power of a TwoLevel Fiber Laser81 5.3.3Output Power of a ThreeLevel Fiber Laser83 5.3.4Output Power of a FourLevel Fiber Laser84 5.3.5Output Power of Yb3+Doped Fiber Laser85 References906Broadband Fiber Amplifiers and Sources91 6.1Introduction91 6.2Pr3+Tm3+Er3+CoDoped Fiber System92 6.2.1General Rate and PowerPropagation Equations with Two Wavelength Pumps92 6.2.2Gain Characteristics with 980nm Pump96 6.2.3Gain Characteristics with 793nm Pump99 6.2.4Gain Characteristics with Double Pumps105 6.3Gain Characteristics of Pr3+Er3+CoDoped Fiber System131 6.3.1Rate and PowerPropagation Equations131 6.3.2Dependence of Gain on Fiber Parameters134 6.4WDM Transmission System Cascaded with Tm3+Er3+CoDoped Fiber Amplifiers139 6.4.1WDM System with Single Pump140 6.4.2WDM System with Dual Pumps141 References1437Photonic Glass Waveguide for Spectral Conversion145 7.1Introduction145 7.2Theoretical Model and Spectral Characterization 146 7.2.1Theoretical Model 146 7.2.2Spectral Characterization 148 ContentsixxContents7.3DoublyDoped System 148 7.3.1Energy Transfer Model 149 7.3.2Quantum Efficiency of Photonic Glass Waveguide 152 7.4TriplyDoped System 159 7.4.1Energy Transfer Model 159 7.4.2Quantum Efficiency of Photonic Glass Waveguide 163 7.5Performance Evaluation of scSiSolar Cell with Photonic Glass Waveguides 171 References1748Photonic Glass Waveguide for WhiteLight Generation177 8.1Introduction 177 8.2WhiteLight Glasses 178 8.2.1Tm3+Tb3+Eu3+CoDoped System 178 8.2.2Yb3+Er3+Tm3+CoDoped System 185 8.3EmissionTunable Glasses194 8.3.1Tb3+Sm3+Dy3+CoDoped System 194 8.3.2Tm3+Yb3+Ho3+CoDoped System 205 References214Appendix 1Matlab Code for Solving Nonlinear Rate and Power Propagation Equation Groups in Co Doped Fiber Amplifiers or Fiber Sources219 A1.1Nonlinear Rate Equation Group and Coupled PowerPropagation Equation Group of a ThreeActive IonsCoDoped System219 A1.2Code for Solving Linear Rate Equation Group220 A1.3Code for Solving Nonlinear Rate Equation Group220 A1.4Code for Variation of Gain with Fiber Length222 A1.5Code for Variation of Gain with Active Ion Concentration223Appendix 2Matlab Code for Solving PowerPropagation Equations of a Laser Cavity with FourLevel System225Index228