Preface 1. Introduction Telling Better Stories with Data A Quick Look: Data Science for SAP Professionals A Quick Look: SAP Basics for Data Scientists Getting Data Out of SAP Roles and Responsibilities Summary 2. Data Science for SAP Professionals Machine Learning Supervised Machine Learning Unsupervised Machine Learning Semi-Supervised Machine Learning Reinforcement Macl'rine Learning Neural Networks Summary 3. SAP for Data Scientists Getting Started with SAP The ABAP Data Dictionary Tables Structures Data Elements and Domains Where-Used ABAP QuickViewer SE16 Export OData Services Core Data Services Summary 4. Exploratory Data Analysis with R The Four Phases of EDA Phase 1: Collecting Our Data Importing with R Phase 2: Cleaning Our Data Null Removal Binary Indicators Removing Extraneous Columns Whitespace Numbers Phase 3: Analyzing Our Data DataExplorer Discrete Features Continuous Features Phase 4: Modeling Our Data TensorFlow and Keras Training and Testing Split Shaping and One-Hot Encoding Recipes Preparing Data for the Neural Network Results Summary 5. Anomaly Detection with R and Python Types of Anomalies Tools in R AnomalyDetection Anomalize Getting the Data SAP ECC System SAP NetWeaver Gateway SQL Server Finding Anomalies PowerBI and R PowerBI and Python Summary 6. Predictive Analytics in R and Python Predicting Sales in R Step 1: Identify Data Step 2: Gather Data Step 3: Explore Data Step 4: Model Data Step 5: Evaluate Model Predicting Sales in Python Step 1: Identify Data Step 2: Gather Data Step 3: Explore Data Step 4: Model Data Step 5: Evaluate Model Summary 7. Clustering and Segmentation in R Understanding Clustering and Segmentation RFM Pareto Principle k-Means k-Medoid Hierarchical Clustering Time-Series Clustering Step 1: Collecting the Data Step 2: Cleaning the Data Step 3: Analyzing the Data Revisiting the Pareto Principle Finding Optimal Clusters k-Means Clustering k-Medoid Clustering Hierarchical Clustering Manual RFM Step 4: Report the Findings R Markdown Code R Markdown Knit Summary 8. Association Rule Mining Understanding Association Rule Mining Support Confidence Lift Apriori Algorithm Operationalization Overview Collecting the Data Cleaning the Data Analyzing the Data Fiori Summary 9. Natural Language Processing with the Google Cloud Natural Language API Understanding Natural Language Processing Sentiment Analysis Translation Preparing the Cloud API Collecting the Data Analyzing the Data Summary 10. Conclusion Original Mission Recap Chapter 1: Introduction Chapter 2: Data Science for SAP Professionals Chapter 3: SAP for Data Scientists Chapter 4: Exploratory Data Analysis Chapter 5: Anomaly Detection with R and Python Chapter 6: Prediction with R Chapter 7: Clustering and Segmentation in R Chapter 8: Association Rule Mining Chapter 9: Natural Language Processing with the Google Cloud Natural Language API Tips and Recommendations Be Creative Be Practical Enjoy the Ride Stay in Touch Index