Saeed Moaveni博士是一位成功的作者、教師與工程專(zhuān)家。他于1990年加入明尼蘇達(dá)州立大學(xué)機(jī)械工程部,現(xiàn)在是機(jī)械工程學(xué)院的院長(zhǎng)。他是美國(guó)機(jī)械工程學(xué)會(huì)(ASME)的會(huì)員和美國(guó)工程教育學(xué)會(huì)(ASEE)的Tau Beta Pi 榮譽(yù)會(huì)員。
圖書(shū)目錄
Contents
1 Introduction 1 1.1 Engineering Problems 2 1.2 Numerical Methods 5 1.3 A Brief History of the Finite Element Method and ANSYS 6 1.4 Basic Steps in the Finite Element Method 6 1.5 Direct Formulation 8 1.6 Minimum Total Potential Energy Formulation 37 1.7 Weighted Residual Formulations 43 1.8 Verification of Results 48 1.9 Understanding the Problem 49 Summary 54 References 54 Problems 54
2 Matrix Algebra 66 2.1 Basic Definitions 66 2.2 Matrix Addition or Subtraction 69 2.3 Matrix Multiplication 69 2.4 Partitioning of a Matrix 73 2.5 Transpose of a Matrix 77 2.6 Determinant of a Matrix 81 2.7 Solutions of Simultaneous Linear Equations 86 2.8 Inverse of a Matrix 94 2.9 Eigenvalues and Eigenvectors 98 2.10 Using MATLAB to Manipulate Matrices 102 2.11 Using Excel to Manipulate Matrices 106 2.12 Solutions of Simultaneous Nonlinear Equations 121 Summary 123 References 124 Problems 124
3 Trusses 129 3.1 Definition of a Truss 129 3.2 Finite Element Formulation 130 3.3 Space Trusses 155 3.4 Overview of the ANSYS Program 157 3.5 ANSYS Workbench Environment 165 3.6 Examples Using ANSYS 165 3.7 Verification of Results 197 Summary 199 References 199 Problems 199
4 Axial Members, Beams, and Frames 209 4.1 Members Under Axial Loading 209 4.2 Beams 217 4.3 Finite Element Formulation of Beams 222 4.4 Finite Element Formulation of Frames 238 4.5 Three-Dimensional Beam Element 244 4.6 An Example Using ANSYS 246 4.7 Verification of Results 271 Summary 273 References 274 Problems 275
5 One-Dimensional Elements 287 5.1 Linear Elements 287 5.2 Quadratic Elements 291 5.3 Cubic Elements 293 5.4 Global, Local, and Natural Coordinates 296 5.5 Isoparametric Elements 298 5.6 Numerical Integration: Gauss–Legendre Quadrature 300 5.7 Examples of One- Dimensional Elements in ANSYS 305 Summary 305 References 305 Problems 305
6 Analysis of One-Dimensional Problems 312 6.1 Heat Transfer Problems 312 6.2 A Fluid Mechanics Problem 331 6.3 An Example Using ANSYS 335 6.4 Verification of Results 350 6.5 Members Under Axial Loading with Temperature Change 351 Summary 353 References 353 Problems 353
7 Two-Dimensional Elements 357 7.1 Rectangular Elements 357 7.2 Quadratic Quadrilateral Elements 361 7.3 Linear Triangular Elements 366 7.4 Quadratic Triangular Elements 371 7.5 Axisymmetric Elements 375 7.6 Isoparametric Elements 380 7.7 Two-Dimensional Integrals: Gauss–Legendre Quadrature 383 7.8 Examples of Two-Dimensional Elements in ANSYS 384 Summary 385 References 385 Problems 386
8 More ANSYS 393 8.1 ANSYS Program 393 8.2 ANSYS Database and Files 394 8.3 Creating a Finite Element Model with ANSYS: Preprocessing 396 8.4 h-Method Versus p-Method 410 8.5 Applying Boundary Conditions, Loads, and the Solution 410 8.6 Results of Your Finite Element Model: Postprocessing 413 8.7 Selection Options 418 8.8 Graphics Capabilities 419 8.9 Error-Estimation Procedures 421 8.10 More on ANSYS Workbench Environment 422 8.11 An Example Problem 428 Summary 441 References 442
9 Analysis of Two-Dimensional Heat Transfer Problems 443 9.1 General Conduction Problems 443 9.2 Formulation with Rectangular Elements 450 9.3 Formulation with Triangular Elements 461 9.4 Axisymmetric Formulation of Three-Dimensional Problems 480 9.5 Unsteady Heat Transfer 487 9.6 Conduction Elements Used by ANSYS 497 9.7 Examples Using ANSYS 498 9.8 Verification of Results 538 Summary 538 References 540 Problems 540
10 Analysis of Two-Dimensional Solid Mechanics Problems 552 10.1 Torsion of Members with Arbitrary Cross-Section Shape 552 10.2 Plane-Stress Formulation 568 10.3 Isoparametric Formulation: Using a Quadrilateral Element 576 10.4 Axisymmetric Formulation 583 10.5 Basic Failure Theories 585 10.6 Examples Using ANSYS 586 10.7 Verification of Results 608 Summary 608 References 610 Problems 610
11 Dynamic Problems 619 11.1 Review of Dynamics 619 11.2 Review of Vibration of Mechanical and Structural Systems 633 11.3 Lagrange’s Equations 650 11.4 Finite Element Formulation of Axial Members 652 11.5 Finite Element Formulation of Beams and Frames 661 11.6 Examples Using ANSYS 675 Summar