《電力市場(chǎng)大數(shù)據(jù)分析=Data Analytics in Power Markets:英文》以電力市場(chǎng)領(lǐng)域近年來(lái)的研究工作成果為基礎(chǔ),力圖系統(tǒng)性地介紹電力市場(chǎng)中的數(shù)據(jù)價(jià)值挖掘方法以支撐市場(chǎng)組織者和市場(chǎng)參與者的決策問(wèn)題?!峨娏κ袌?chǎng)大數(shù)據(jù)分析=Data Analytics in Power Markets:英文》圍繞電力市場(chǎng)中的公開(kāi)數(shù)據(jù)和機(jī)器學(xué)習(xí)方法理論與應(yīng)用展開(kāi),結(jié)合電力市場(chǎng)規(guī)則和物理特征,期望解決市場(chǎng)規(guī)則解析和數(shù)據(jù)結(jié)構(gòu)化兩大核心難點(diǎn),并從負(fù)荷與電價(jià)預(yù)測(cè)、報(bào)價(jià)行為解析、金融衍生品投機(jī)等方面,構(gòu)建了電力市場(chǎng)數(shù)據(jù)分析理論和技術(shù)方法體系?! 峨娏κ袌?chǎng)大數(shù)據(jù)分析=Data Analytics in Power Markets:英文》共13章,第1章介紹了世界各地的電力市場(chǎng)數(shù)據(jù)概況。除第1章外,剩余內(nèi)容分為三部分。第一部分為負(fù)荷建模與預(yù)測(cè),包括了基于智能電表數(shù)據(jù)的負(fù)荷預(yù)測(cè)方法等。第二部分為電價(jià)建模與預(yù)測(cè),包括了節(jié)點(diǎn)電價(jià)數(shù)據(jù)的子空間特性建模等。第三部分為市場(chǎng)投標(biāo)行為分析,包括了機(jī)組投標(biāo)行為的特征提取方法等。
作者簡(jiǎn)介
暫缺《電力市場(chǎng)大數(shù)據(jù)分析(英文版)》作者簡(jiǎn)介
圖書(shū)目錄
Contents 1 Introduction to Power Market Data 1 1.1 Overview of Electricity Markets 1 1.2 Organization and Data Disclosure of Electricity Market 4 1.2.1 Transaction Data 5 1.2.2 Price Data 7 1.2.3 Supply and Demand Data 7 1.2.4 System Operation Data 8 1.2.5 Forecast Data 8 1.2.6 Confidential Data 9 1.3 Conclusions 9 References 9 PartⅠ Load Modeling and Forecasting 2 Load Forecasting with Smart Meter Data 13 2.1 Introduction 13 2.2 Framework 14 2.3 Ensemble Learning for Probabilistic Forecasting 16 2.3.1 Quantile Regression Averaging 17 2.3.2 Factor Quantile Regression Averaging 18 2.3.3 LASSO Quantile Regression Averaging 18 2.3.4 Quantile Gradient Boosting Regression Tree 19 2.3.5 Rolling Window-Based Forecasting 20 2.4 Case Study 20 2.4.1 Experimental Setups 2 2.4.2 Evaluation Criteria 21 2.4.3 Experimental Results 22 2.5 Conclusions 24 References 24 3 Load Data Cleaning and Forecasting 27 3.1 Introduction 27 3.2 Characteristics of Load Profiles 29 3.2.1 Low-Rank Property of Load Profiles 29 3.2.2 Bad Data in Load Profiles 30 3.3 Methodology 31 3.3.1 Framework 31 3.3.2 Singular Value Thresholding (SVT) 32 3.3.3 Quantile RF Regression 34 3.3.4 Load Forecasting 35 3.4 Evaluation Criteria 35 3.4.1 Data Cleaning-Based Criteria 35 3.4.2 Load Forecasting-Based Criteria 35 3.5 Case Study 36 3.5.1 Result of Data Cleaning 36 3.5.2 Day Ahead Point Forecast 37 3.5.3 Day Ahead Probabilistic Forecast 38 3.6 Conclusions 40 References 40 4 Monthly Electricity Consumption Forecasting 43 4.1 Introduction 43 4.2 Framework 46 4.2.1 Data Collection and Treatment 46 4.2.2 SVECM Forecasting 47 4.2.3 Self-adaptive Screening 48 4.2.4 Novelty and Characteristics of SAS-SVECM 48 4.3 Data Collection and Treatment 48 4.3.1 Data Collection and Tests 49 4.3.2 Seasonal Adjustments Based on X-12-ARIMA 49 4.4 SVECM Forecasting 49 4.4.1 VECM Forecasting 49 4.4.2 Time Series Extrapolation Forecasting 52 4.5 Self-adaptive Screening 53 4.5.1 Influential EEF Identification 53 4.5.2 Influential EEF Grouping 53 4.5.3 Forecasting Performance Evaluation Considering Different EEF Groups 55 4.6 Case Study 56 4.6.1 Basic Data and Tests 56 4.6.2 Electricity Consumption Forecasting Performance Without SAS 58 4.6.3 EC Forecasting Performance with SAS 61 4.6.4 SAS-SVECM Forecasting Comparisons with Other Forecasting Methods 65 4.7 Conclusions 67 References 67 5 Probabilistic Load Forecasting 71 5.1 Introduction 71 5.2 Data and Model 73 5.2.1 Load Dataset Exploration 73 5.2.2 Linear Regression Model Considering Recency-Effects 73 5.3 Pre-Lasso Based Feature Selection 76 5.4 Sparse Penalized Quantile Regression (Quantile-Lasso) 77 5.4.1 Problem Formulation 77 5.4.2 ADMM Algorithm 78 5.5 Implementation 80 5.6 Case Study 81 5.6.1 Experiment Setups 81 5.6.2 Results 82 5.7 Concluding Remarks 86 References 86 Part Ⅱ Electricity Price Modeling and Forecasting 6 Subspace Characteristics of LMP Data 91 6.1 Introduction 91 6.2 Model and Distribution of LMP 93 6.3 Methodology 6.3.1 Problem Formulation 96 6.3.2 Basic Framework 97 6.3.3 Principal Component Analysis 98 6.3.4 Recursive Basis Search (Bottom-Up) 98 6.3.5 Hyperplane Detection (Top-down) 100 6.3.6 Short Summary 103 6.4 Case Study 103 6.4.1 Case 1: IEEE 30-Bus System 104 6.4.2 Case 2: IEEE 118-Bus System 106 6.4.3 Case 3: Illinois 200-Bus System 106 6.4.4 Case 4: Southwest Power Pool (SPP) 107 6.4.5 Time Consumption 108 6.5 Discussion and Conclusion 110 6.5.1 Discussion on Potential Applications 110 6.5.2 Conclusion 110 References 111 7 Day-Ahead Electricity Price Forecasting 113 7.1 Introduction 113 7.2 Problem Formulation 116 7.2.1 Decomposition of LMP 116 7.2.2 Short-Term Forecast for Each Component 117 7.2.3 Summation and Stacking of Individual Forecasts 118 7.3 Methodology 119 7.3.1 Framework 119 7.3.2 Feature Engineering 121 7.3.3 Regression Model Selection and Parameter Tuning 122 7.3.4 Model Stacking with Robust Regression 123 7.3.5 Metrics 124 7.4 Case Study 124 7.4.1 Model Selection Results 125 7.4.2 Componential Results 126 7.4.3 Stacking Results (Overall Improvements) 128 7.4.4 Error Distribution Analysis 129 7.5 Conclusion 132 References 132 8 Economic Impact of Price Forecasting Error 135 8.1 Introduction 135 8.2 General Bidding Models 137 8.2.1 Deterministic Bidding Model 138 8.2.2 Stochastic Bidding Model 139 8.3 Methodology and Framework 141 8.3.1 Forecasting Error Modeling 141 8.3.2 Multiparametric Linear Programming (MPLP)Theory 141 8.3.3 Error Impact Formulation 142 8.3.4 Overall Framework 144 8.4 Case Study 145 8.4.1 Measurement of STPF Error Level 145 8.4.2 Case 1: LSE with Deman