《Fracture Mechanics of Nonhomogeneous Materials》包含了作者近20年在非均勻材料斷裂力學(xué)領(lǐng)域的重要研究成果。這些工作主要針對國際非均勻材料斷裂力學(xué)領(lǐng)域理論模型的不足以及復(fù)雜界面條件下斷裂力學(xué)領(lǐng)域能量積分理論的理論空白開展了系統(tǒng)、深入的研究,從基礎(chǔ)理論到仿真方法提出了有特色的研究思想。具體工作包括:非均勻材料的斷裂力學(xué)基本理論、非均勻材料的傳統(tǒng)特殊指數(shù)型模型、具有一般屬性的非均勻材料斷裂力學(xué)模型、含復(fù)雜界面非均勻材料的區(qū)域無關(guān)積分方法、考慮界面殘余應(yīng)力的一般性區(qū)域無關(guān)積分模型等內(nèi)容。這些工作,克服了一般屬性非均勻材料(梯度材料)的斷裂力學(xué)難題,澄清了近30年來人們對傳統(tǒng)指數(shù)模型的質(zhì)疑,拓展并完善了非均質(zhì)材料斷裂力學(xué)的理論體系。相關(guān)工作得到了國際權(quán)威學(xué)術(shù)期刊和相關(guān)領(lǐng)域權(quán)威專家的好評。
作者簡介
暫缺《非均勻材料斷裂力學(xué)(英文版)》作者簡介
圖書目錄
目錄 Contents Preface Chapter 1 Fundamental theory of fracture mechanics of nonhomogeneous materials 1 1.1 Internal crack 2 1.1.1 Basic equations for nonhomogeneous materials 2 1.1.2 Crack-tip fields for homogeneous materials 3 1.1.3 Crack-tip fields for nonhomogeneous materials 6 1.1.4 Crack-tip fields for nonhomogeneous orthotropic materials 12 1.2 Interface crack 14 1.2.1 Crack-tip fields of an interface crack 14 1.2.2 Crack-tip fields of an interface crack between two nonhomogeneous media 19 1.3 Three-dimensional curved crack 23 1.3.1 Internal crack 23 1.3.2 Interface crack 25 References 26 Chapter 2 Exponential models for crack problems in nonhomogeneous materials 28 2.1 Crack model for nonhomogeneous materials with an arbitrarily oriented crack 29 2.1.1 Basic equations and boundary conditions 29 2.1.2 Full field solution for a crack in the nonhomogeneous medium 31 2.1.3 Stress intensity factors (SIFs) and strain energy release rate (SERR) 36 2.2 Crack problems in nonhomogeneous coating-substrate or double-layered structures 38 2.2.1 Interface crack in nonhomogeneous coating-substrate structures 38 2.2.2 Cross -interface crack parallel to the gradient of material properties 45 2.2.3 Arbitrarily oriented crack in a double-layered structure 54 2.3 Crack problems in orthotropic nonhomogeneous materials 69 2.3.1 Basic equations and boundary conditions 69 2.3.2 Solutions to stress and displacement fields 71 2.3.3 Crack-tip SIFs 77 2.4 Transient crack problem of a coating-substrate structure 78 2.4.1 Basic equations and boundary conditions 78 2.4.2 Solutions to stress and displacement fields 79 2.4.3 Crack-tip SIFs 84 2.5 Representative examples 85 2.5.1 Example 1: Arbitrarily oriented crack in an infinite nonhomogeneous medium 85 2.5.2 Example 2: Interface crack between the coating and the substrate 88 2.5.3 Example 3: Crossing-interface crack perpendicular to the interface in a double-layered structure 89 2.5.4 Example 4: Inclined crack crossing the interface 94 2.5.5 Example 5: Vertical crack in a nonhomogeneous coating-substrate structure subjected to impact loading 96 Appendix 2A 98 References 99 Chapter 3 General model for nonhomogeneous materials with general elastic properties 101 3.1 Piecewise-exponential model for the mode I crack problem 102 3.1.1 Piecewise-exponential model (PE model) 102 3.1.2 Solutions to stress and displacement fields 105 3.1.3 Crack-tip SIFs 111 3.2 PE model for mixed-mode crack problem 112 3.2.1 Basic equations and boundary conditions 112 3.2.2 Solutions to stress and displacement fields 114 3.2.3 Crack-tip SIFs 119 3.3 PE model for dynamic crack problem 119 3.3.1 Basic equations and boundary conditions 119 3.3.2 Solutions to stress and displacement fields 123 3.3.3 Crack-tip SIFs 126 3.4 Representative examples 127 3.4.1 Example 1: Mode I crack problem for nonhomogeneous materials with general elastic properties 127 3.4.2 Example 2: Mixed-mode crack problem for nonhomogeneous materials with general elastic properties and an arbitrarily oriented crack 134 3.4.3 Example 3: Dynamic Mode I crack problem for nonhomogeneous materials with general elastic properties 139 Appendix 3A 145 References 151 Chapter 4 Fracture mechanics of nonhomogeneous materials based on piecewise-exponential model 153 4.1 Thermomechanical crack models of nonhomogeneous materials 154 4.1.1 Crack model for nonhomogeneous materials under steady thermal loads 154 4.1.2 Crack model for nonhomogeneous materials under thermal shock load 157 4.2 Viscoelastic crack model of nonhomogeneous materials 170 4.2.1 The correspondence principle for viscoelastic FGMs 170 4.2.2 Viscoelastic models for nonhomogeneous materials 173 4.2.3 PE model for the viscoelastic nonhomogeneous materials 174 4.3 Crack model for nonhomogeneous materials with stochastic properties 177 4.3.1 Stochastic micromechanics-based model for effective properties 177 4.3.2 Probabilistic characteristics of effective properties at transition region 182 4.3.3 Crack in nonhomogeneous materials with stochastic mechanical properties 183 4.4 Examples 188 4.4.1 Example 1: Steady thermomechanical crack problem 188 4.4.2 Example 2: Viscoelastic crack problem 195 4.4.3 Example 3: Crack problem in FGMs with stochastic mechanical properties 198 References 202 Chapter 5 Fracture of nonhomogeneous materials with complex interfaces 205 5.1 Interaction integral (I-integral) 207 5.1.1 J-integral 207 5.1.2 I-integral 208 5.1.3 Auxiliary field 208 5.1.4 Extraction of the SIFs 210 5.2 Domain-independent I-integral (DII-integral) 211 5.2.1 Domain form of the I-integral 211 5.2.2 DII-integral 214 5.3 DII-integral for orthotropic materials 220 5.4 Consideration of dynamic process 223 5.5 Calculation of the T-st