1 The Basics of Quantum Mechanics for the Weakest BoundElectron(WBE)Theory 1 11 The Wave-Particle Duality 1 12 The Uncertainty Principle 1 13 The Schrodinger Equation 3 14 Electron Spin and Spin Orbital [3,6-8]6 15 The Indistinguishability of Micro Identical Particles 9 16 Pauli Exclusion Principle and Periodic Table 10 17 One of the Approximation Methods in Quantum Mechanics—The Variation Method 14 References 18 2 The Weakest Bound Electron Theory(1)21 21 The Concept of the Weakest Bound Electron 21 22 Ionization Process and Aufbau-Like Process is Reversible 23 23 The One-Electron Hamiltonian for the Weakest Bound Electron 26 231The Non-Relativistic One-Electron Hamiltonian for the Weakest Bound Electron 26 232 The Treatment of Magnetic Interaction Between Electrons 30 233 Relativistic Hamiltonian 31 24 The One-Electron Schrodinger Equation of the Weakest Bound Electron 33 25 The Key Points of the WBE Theory 35 References 35 3 The Weakest Bound Electron Theory (2)37 31 Potential Function37 32 The Solution of the Radial Equation 39 321Spherical Harmonic 39 322 Generalized Laguerre Functions 42 323 Restore the Form of Hydrogen and Hydrogen-Like Atoms 47 324 The Definition and Properties of Generalized Laguerre Functions 48 325 The Proof of the Satisfaction of Hellmann-Feynman Theorem54 33 Matrix Element and Mean Value of Radial Operator rk 56 34 The Exact Solutions of Scattering States in WBEPM Theory 58 35 The Formula for the Calculation of Fine Structure 60 36 Calculation of Spin-Orbit Coupling Coefficient 61 37 Relation Between the WBEPM Theory and Slater-Type Orbitals 62 References 66 4 The Application of the WBE Theory 69 41 Ionization Energy [1-10] 69 411Introduction 69 412 Iso-spectrum-level Series and the Differential Law of Ionization Energy in the Series 76 413 Calculation of Ionization Energy 86 414 The Successive Ionization Energies of the 4f Electrons for the Lanthanides [10]91 42 Energy Level [39-50] 96 421 Introduction 96 422 Formulae for Calculating Energy Levels 99 423 Methods for Parameter Characterization 101 424 Examples 107 43 Calculation of Oscillator Strength, Transition Probability and Radiative Lifetime [88-104]129 431Introduction129 432 Theory and Method for Calculation 131 433 Examples 135 44 Calculation of Total Electron Energy [1,159,160] 155 441 Calculation of Total Electron Energy of the SystemUsing Ionization Energy 157 442 Variational Treatment on the Energy of the He-Sequence Ground State with the WBEPTheory 158 443 Perturbation Treatment on the Energy of the He-Sequence Ground State with the WBEPMTheory [160] 176 45 Electronegativity, Hard and Soft Acids and Bases, and the Molecular Design of Coordination Polymers 179 451 The Electronegativity Concept and Scale 179 452 The Nuclear Potential Scale of the Weakest Bound Electron [185,200] 180 453 The Hard-Soft-Acid-Base Concept and Scale 185 454 Molecular Design of Coordination Polymers 188 References 196 Representation Publications 207 Postscript 211 Index 213