日韩精品 中文字幕 动漫,91亚洲午夜一区,在线不卡日本v一区v二区丶,久久九九国产精品自在现拍

注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計算機(jī)/網(wǎng)絡(luò)計算機(jī)科學(xué)理論與基礎(chǔ)知識基于聯(lián)合稀疏的信號檢測與恢復(fù)方法研究(英文版)

基于聯(lián)合稀疏的信號檢測與恢復(fù)方法研究(英文版)

基于聯(lián)合稀疏的信號檢測與恢復(fù)方法研究(英文版)

定 價:¥99.00

作 者: 王學(xué)謙
出版社: 清華大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787302620006 出版時間: 2023-11-01 包裝: 精裝
開本: 16開 頁數(shù): 字?jǐn)?shù):  

內(nèi)容簡介

  本書圍繞聯(lián)合稀疏信號的檢測和恢復(fù),主要研究了聯(lián)合稀疏信號的檢測方法及其檢測性能界限、聯(lián)合稀疏信號的恢復(fù)方法及其在雷達(dá)成像問題中的應(yīng)用;介紹了基于局部**勢檢驗(yàn)的聯(lián)合稀疏信號檢測方法,分析了該方法在模擬數(shù)據(jù)、低比特量化數(shù)據(jù)、高斯和廣義高斯噪聲情形下的理論檢測性能。同時,介紹了一種基于前瞻基信號選擇和雙塊稀疏性的聯(lián)合稀疏信號恢復(fù)方法,并以多極化雷達(dá)成像為應(yīng)用實(shí)例,介紹了聯(lián)合稀疏信號的恢復(fù)方法;通過改善雷達(dá)圖像中非零像素點(diǎn)的聚集程度和抑制目標(biāo)區(qū)域外的能量泄露,提升了雷達(dá)的成像質(zhì)量。 本書可供從事通信、雷達(dá)等信號處理的研究人員參考、學(xué)習(xí)。

作者簡介

  王學(xué)謙,2020年畢業(yè)于清華大學(xué)信息與通信工程專業(yè),導(dǎo)師為李剛教授?,F(xiàn)在清華大學(xué)從事博士后研究,導(dǎo)師為何友院士,研究方向?yàn)橄∈栊盘柼幚怼⑿畔⑷诤?、遙感圖像處理、雷達(dá)成像、目標(biāo)檢測。近5年以第一作者發(fā)表SCI期刊文章10篇(其中包括8篇IEEE長文),以第一作者發(fā)表EI國際會議文章4篇,已授權(quán)專利4項(xiàng)。獲北京市優(yōu)秀畢業(yè)生、清華大學(xué)水木學(xué)者、清華大學(xué)優(yōu)秀博士畢業(yè)論文等榮譽(yù),主持國家博士后創(chuàng)新人才支持計劃、博士后面上基金項(xiàng)目。

圖書目錄

 
 
 
 
1 Introduction 1
1.1 Background 1
1.2 Related Works 4
1.2.1 Detection Methods for Jointly Sparse Signals 4
1.2.2 Recovery Methods for Jointly Sparse Signals 5
1.3 Main Content and Organization 9
References 12
2 Detection of Jointly Sparse Signals via Locally Most Powerful Tests with Gaussian Noise 17
2.1 Introduction 17
2.2 Signal Model for Jointly Sparse Signal Detection 18
2.3 LMPT Detection Based on Analog Data 20
2.3.1 Detection Method 20
2.3.2 Theoretical Analysis of Detection Performance 23
2.4 LMPT Detection Based on Coarsely Quantized Data 25
2.4.1 Detection Method 26
2.4.2 Quantizer Design and the Effect of Quantization on Detection Performance 28
2.5 Simulation Results 33
2.5.1 Simulation Results of the LMPT Detector with Analog Data 33
2.5.2 Simulation Results of the LMPT Detector with Quantized Data 35
2.6   Conclusion 40
References 40
3 Detection of Jointly Sparse Signals via Locally Most Powerful Tests with Generalized Gaussian Model  43
3.1   Introduction  43
3.2   The LMPT Detector Based on Generalized Gaussian Model and Its Detection Performance 43
3.2.1 Generalized Gaussian Model 44
3.2.2 Signal Detection Method 46
3.2.3 Theoretical Analysis of Detection Performance 49
3.3 Quantizer Design and Analysis of Asymptotic Relative Efficiency 50
3.3.1 Quantizer Design 50
3.3.2 Asymptotic Relative Ef?ciency 53
3.4 Simulation Results 54
3.5 Conclusion 59
References 59
4 Jointly Sparse Signal Recovery Method Based on Look-Ahead-Atom-Selection 61
4.1 Introduction 61
4.2 Background of Recovery of Jointly Sparse Signals 62
4.3 Signal  Recovery  Method  Based on Look-Ahead-Atom-Selection and Its Performance Analysis 64
4.3.1 Signal Recovery Method 65
4.3.2 Performance Analysis 67
4.4 Experimental Results 69
4.5 Conclusion 75
References 75
5 Signal Recovery Methods Based on Two-Level Block Sparsity 77
5.1 Introduction 77
5.2 Signal Recovery Method Based on Two-Level Block Sparsity with Analog Measurements 79
5.2.1 PGM-Based Two-Level Block Sparsity 79
5.2.2 Two-Level Block Matching Pursuit 83
5.3 Signal Recovery Method Based on Two-Level Block Sparsity with 1-Bit Measurements 86
5.3.1 Background of Sparse Signal Recovery Based on 1-Bit Measurements 87
5.3.2 Enhanced-Binary Iterative Hard Thresholding 89
5.4 Simulated and Experimental Results 94
5.4.1 Simulated and Experimental Results Based on Analog Data 94
5.4.2 Simulated and Experimental Results Based on 1-Bit Data 99
5.5 Conclusion 104
References 105
6 Summary and Perspectives 107
6.1 Summary 107
6.2 Perspectives 109
References 110
Appendix A: Proof of (2.61) 111
Appendix B: Proof of Lemma 1 113
Appendix C: Proof of (3.6) 115
Appendix D: Proof of Theorem 1 117
Appendix E: Proof of Lemma 2 119
About the Author 121

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) rgspecialties.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號