日韩精品 中文字幕 动漫,91亚洲午夜一区,在线不卡日本v一区v二区丶,久久九九国产精品自在现拍

注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)人工智能機(jī)器學(xué)習(xí)與人工智能實(shí)戰(zhàn):基于業(yè)務(wù)場(chǎng)景的工程應(yīng)用

機(jī)器學(xué)習(xí)與人工智能實(shí)戰(zhàn):基于業(yè)務(wù)場(chǎng)景的工程應(yīng)用

機(jī)器學(xué)習(xí)與人工智能實(shí)戰(zhàn):基于業(yè)務(wù)場(chǎng)景的工程應(yīng)用

定 價(jià):¥138.00

作 者: 杰夫·普羅西斯
出版社: 清華大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787302635239 出版時(shí)間: 2023-07-01 包裝: 平裝-膠訂
開本: 16開 頁數(shù): 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  工程師需要知道的機(jī)器學(xué)習(xí)和人工智能提供的實(shí)例和圖示來自Prosise的AI和ML課程,這]課程受到了全球各地許多公司和研究所的青睞和歡迎。作者不涉及讓人滑悚然和望而生畏的數(shù)學(xué)公式,目的只有一個(gè)那就 是面向工程師和軟件開發(fā)人員,幫助他們迅速入門并通過案例迅速運(yùn)用人工智能和機(jī)器學(xué)習(xí)來解決業(yè)務(wù)問題。本書講幫助讀者學(xué)會(huì)什么是機(jī)器學(xué)習(xí)和深度學(xué)習(xí)以及兩者各有哪些用途;理解常用的深度學(xué)習(xí)算法的原理及其應(yīng)用;學(xué)會(huì)標(biāo)記和未標(biāo)記數(shù)據(jù),監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)有何差異;通過scikit-learn和神經(jīng)網(wǎng)絡(luò)Keras和TensorFlow ,運(yùn)用Python來進(jìn)行機(jī)器學(xué)習(xí)建模;訓(xùn)練和評(píng)分地柜模型與-進(jìn)制和多類粉類器模型 ;構(gòu)建面檢測(cè)和面識(shí)別模型以及 對(duì)象檢測(cè)模型。本書適合硬件工程師與軟件開發(fā)人員閱讀和參考

作者簡(jiǎn)介

  杰夫·普羅西斯 (Jeff Prosise) ,資深工程師,熱心于幫助工程師和軟件開發(fā)人員用好人工智能和機(jī)器學(xué)習(xí)。作為Wintellect的聯(lián)合創(chuàng)始人,他在微軟培訓(xùn)過幾千名開發(fā)人員,在一些全球軟件大會(huì)上發(fā)表過演講。此外,杰夫還效力于橡樹嶺國(guó)家實(shí)驗(yàn)室和勞倫斯利弗莫爾國(guó)家實(shí)驗(yàn)室,從事過高功率激光系統(tǒng)和聚變能研究。目前,杰夫在Atmosera擔(dān)任首席學(xué)習(xí)官,致力于幫助客戶在產(chǎn)品或服務(wù)中實(shí)際應(yīng)用人工智能。

圖書目錄

第I 分 用Scikit-Learn 進(jìn)行機(jī)器學(xué)

第1 章 機(jī)器學(xué) 3

1.1 什么是機(jī)器學(xué) 4

1.1.1 機(jī)器學(xué)與人工智能 7

1.1.2 監(jiān)督和無監(jiān)督學(xué) 9

1.2 使用k-means 聚類算法的無監(jiān)督學(xué) 10

1.2.1 將k-means 聚類算法應(yīng)用于客戶數(shù)據(jù) 13

1.2.2 使用兩個(gè)以上的維度對(duì)客戶進(jìn)行細(xì)分 16

1.3 監(jiān)督學(xué) 19

1.3.1 k 近鄰 22

1.3.2 使用k 近鄰對(duì)花卉進(jìn)行分類 24

1.4 小結(jié) 28

第2 章 回歸模型 30

2.1 線性回歸 30

2.2 決策樹 34

2.3 隨機(jī)森林 37

2.4 梯度提升機(jī) 39

2.5 支持向量機(jī) 41

2.6 回歸模型的度測(cè)量 42

2.7 使用回歸來預(yù)測(cè)車費(fèi) 46

2.8 小結(jié) 51

第3 章 分類模型 53

3.1 邏輯回歸 54

3.2 分類模型的率度量 56

3.3 分類數(shù)據(jù) 61

3.4 二分類 63

3.4.2 檢測(cè)信用卡欺詐 68

3.5 多分類 73

3.6 構(gòu)建數(shù)字識(shí)別模型 74

3.7 小結(jié) 78

第4 章 文本分類 80

4.1 準(zhǔn)備用于分類的文本 81

4.2 情感分析 84

4.3 樸素貝葉斯 88

4.4 垃圾郵件過濾 91

4.5 推薦系統(tǒng) 95

4.5.1 余弦相似性 96

4.5.2 構(gòu)建一個(gè)電影推薦系統(tǒng) 98

4.6 小結(jié) 100

第5 章 支持向量機(jī) 102

5.1 支持向量機(jī)的工作原理 102

5.1.1 核 105

5.1.2 核技巧 106

5.2 參數(shù)調(diào)整 109

5.3 數(shù)據(jù)歸一化 112

5.4 管道化 117

5.5 使用SVM 進(jìn)行面識(shí)別 118

5.6 小結(jié) 124

第6 章 主成分分析 126

6.1 理解主成分分析 127

6.2 噪聲過濾 133

6.3 數(shù)據(jù)匿名化 135

6.4 可視化高維數(shù)據(jù) 137

6.5 異常檢測(cè) 140

6.5.1 使用PCA 檢測(cè)信用卡欺詐 141

6.5.2 使用PCA 來預(yù)測(cè)軸承故障 145

6.5.3 多變量異常檢測(cè) 150

6.6 小結(jié) 151

第7 章 機(jī)器學(xué)模型的作化 152

7.1 從Python 客戶端使用Python 模型 153

7.2 pkl 文件的版本管理 157

7.3 從C# 客戶端使用Python 模型 157

7.4 容器化機(jī)器學(xué)模型 160

7.5 使用ONNX 來橋接不同的語言 161

7.6 用ML.NET 在C# 中構(gòu)建ML 模型 165

7.6.1 用ML.NET 進(jìn)行情感分析 166

7.6.2 存和加載ML.NET 模型 169

7.7 為Excel 添加機(jī)器學(xué)功能 169

7.8 小結(jié) 173

第II 分 用Keras 和TensorFlow 進(jìn)行深度學(xué)

第8 章 深度學(xué) 177

8.1 了解經(jīng)網(wǎng)絡(luò) 178

8.2 訓(xùn)練經(jīng)網(wǎng)絡(luò) 182

8.3 小結(jié) 185

第9 章 經(jīng)網(wǎng)絡(luò) 187

9.1 用Keras 和TensorFlow 構(gòu)建經(jīng)網(wǎng)絡(luò) 188

9.1.1 設(shè)定經(jīng)網(wǎng)絡(luò)的大小 192

9.1.2 使用經(jīng)網(wǎng)絡(luò)來預(yù)測(cè)車費(fèi) 193

9.2 用經(jīng)網(wǎng)絡(luò)進(jìn)行二分類 197

9.2.1 進(jìn)行預(yù)測(cè) 199

9.2.2 訓(xùn)練經(jīng)網(wǎng)絡(luò)來檢測(cè)信用卡欺詐 200

9.3 用經(jīng)網(wǎng)絡(luò)進(jìn)行多分類 204

9.4 訓(xùn)練經(jīng)網(wǎng)絡(luò)進(jìn)行面識(shí)別 207

9.5 Dropout 210

9.6 存和加載模型 211

9.7 Keras 回調(diào) 213

9.8 小結(jié) 216

第10 章 用卷積經(jīng)網(wǎng)絡(luò)進(jìn)行圖像分類 218

10.1 理解CNN 219

10.1.1 使用Keras 和TensorFlow 來構(gòu)建CNN 223

10.1.2 訓(xùn)練CNN 來識(shí)別北野生動(dòng)物 227

10.2 預(yù)訓(xùn)練CNN 232

10.3 使用ResNet50V2 對(duì)圖像分類 235

10.4 轉(zhuǎn)移學(xué) 237

10.5 通過轉(zhuǎn)移學(xué)來識(shí)別北野生動(dòng)物 240

10.6 數(shù)據(jù)增強(qiáng) 243

10.6.1 用ImageDataGenerator 進(jìn)行圖像增強(qiáng) 244

10.6.2 使用增強(qiáng)層進(jìn)行圖像增強(qiáng) 247

10.6.3 將圖像增強(qiáng)應(yīng)用于北野生動(dòng)物 248

10.7 全局池化 251

10.8 用CNN 進(jìn)行音頻分類 252

10.9 小結(jié) 259

第11 章 面檢測(cè)和識(shí)別 261

11.1 人臉檢測(cè) 262

11.1.1 用Viola-Jones 算法進(jìn)行人臉檢測(cè) 263

11.1.2 使用Viola-Jones 的OpenCV 實(shí)現(xiàn) 265

11.1.3 用卷積經(jīng)網(wǎng)絡(luò)檢測(cè)人臉 267

11.1.4 從照片中提取人臉 271

11.2 面識(shí)別 273

11.2.1 將遷移學(xué)應(yīng)用于人臉識(shí)別 274

11.2.2 用任務(wù)定的權(quán)重強(qiáng)化轉(zhuǎn)移學(xué) 277

11.2.3 ArcFace 280

11.3 綜合運(yùn)用:檢測(cè)和識(shí)別照片中的人臉 281

11.4 處理未知人臉:閉集和開集分類 287

11.5 小結(jié) 288

第12 章 目標(biāo)檢測(cè) 290

12.1 R-CNN 291

12.2 Mask R-CNN 294

12.3 YOLO 300

12.4 YOLOv3 和Keras 302

12.5 自定義目標(biāo)檢測(cè) 307

12.5.1 用自定義視覺服務(wù)訓(xùn)練自定義目標(biāo)檢測(cè)模型 308

12.5.2 使用導(dǎo)出的模型 315

12.6 小結(jié) 317

第13 章 自然語言處理 318

13.1 文本準(zhǔn)備 319

13.2 詞嵌入 322

13.3 文本分類 323

13.3.1 自動(dòng)化文本矢量處理 327

13.3.2 在情感分析模型中使用TextVectorization 328

13.3.3 將詞序納入預(yù)測(cè)的因素 330

13.3.4 循環(huán)經(jīng)網(wǎng)絡(luò)(RNN) 331

13.3.5 使用預(yù)訓(xùn)練模型進(jìn)行文本分類 333

13.4 經(jīng)機(jī)器翻譯 335

13.4.1 LSTM 編碼器- 解碼器 336

13.4.2 Transformer 編碼器- 解碼器 338

13.4.3 構(gòu)建基于Transformer 的NMT 模型 340

13.4.4 使用預(yù)訓(xùn)練模型來翻譯文本 349

13.5 基于變換器的雙向編碼器(BERT) 350

13.5.1 構(gòu)建基于BERT 的答題系統(tǒng) 352

13.5.2 調(diào)BERT 以進(jìn)行情感分析 355

13.6 小結(jié) 359

第14 章 Azure 認(rèn)知服務(wù) 361

14.1 Azure 認(rèn)知服務(wù)簡(jiǎn)介 362

14.1.1 密鑰和結(jié)點(diǎn) 364

14.1.2 調(diào)用Azure 認(rèn)知服務(wù)API 367

14.1.3 Azure 認(rèn)知服務(wù)容器 369

14.2 計(jì)算機(jī)視覺服務(wù) 371

14.3 語言服務(wù) 380

14.4 翻譯服務(wù) 383

14.5 語音服務(wù) 385

14.6 集大成者Contoso Travel 386

14.7 小結(jié) 391

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) rgspecialties.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)